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A B S T R A C T

This paper evaluates the effect of Structure-Soil-Structure Interaction (SSSI) between two buildings under
seismic excitation given different parameters of the buildings, inter-building spacing, and soil type. An extended
simplified reduced-order model, that enables higher mode interaction between structures, is proposed. This
enables the exploration of the interaction between buildings with a very large difference in height. A database of
strong ground motions records with Far-Field, Near-Field Without Pulse and Near-Field Pulse-Like character-
istics are employed. Over 3 million system/ground motion cases are analysed in this extensive parametric study.
The results suggest that the extended model captures significant interactions, in displacement responses, for the
cases of a small building closely flanked by a much taller one.

1. Introduction

During an earthquake, civil structures interact with the surrounding
soil beneath their foundations. These structures are typically analysed
(dynamically) as singleton structures, i.e. without any consideration of
their neighbouring structures. This phenomenon is widely known as
Soil-Structure Interaction (SSI), and the importance of including its
beneficial or adverse structural effects has been the focus of attention
for more than 40 years. Nevertheless, the existence of a high density of
buildings in large cities inevitably results in the possibility of seismic
interaction of adjacent buildings through the underlying soil. This
problem is better known as Structure-Soil-Structure Interaction (SSSI)
and has received more attention in recent years. The pioneering works
of Luco and Contesse [1], Kobori et al. [2], Lee and Wesley [3], Mur-
akami and Luco [4], Wong and Trifunac [5], Lysmer et al. [6], and
Roesset and Gonzales [7] have emphasized the complexity of the pro-
blem and have investigated the importance of considering the dynamic
coupling between several structures. Some early experimental studies at
real or small scaled conducted by Mattiesen and MacCalden [8], and
Koroby et al. [9] have also captured the SSSI effects.

More recent investigations have been developed based on numerical
two or three-dimensional Finite Element Method (FEM), Boundary
Elements Method (BEM) or a combination of these two FEM/BEM
procedures. For example, the works of Qian and Beskos [10], Betti [11],
Karabalis and Huang [12], Karabalis and Mohammadi [13], Lehmann

and Antes [14], Qian et al. [15], Bard et al. [16], Yahyai et al. [17],
Padron et al. [18], Bolisetti and Whittaker [19], among others. These
studies have identified key factors that control the seismic interaction
behaviour such as: (i) the inter-building distance, (ii) the direction of
the alignment between foundations, (iii) the relative height and dy-
namic characteristics of adjacent buildings, (iv) the aspect ratio (the
building height to width ratio), and (v) the soil class.

Discrete soil/foundation-spring models have been successfully ap-
plied in the evaluation of SSSI problems, where Mulliken and Karabalis
[20,21] calculated the interaction between adjacent two and three
identical rigid surface foundations supported by a homogeneous half-
space soil, and subjected to impulsive, moment, sinusoidal and random
loads. Recently, Alexander et al. [22] proposed a set of rotational
springs to model the interaction between adjacent closely spaced
buildings. These models were validated using finite element analyses.
Aldaikh et al. [23,28] and Knappett et al. [29] extended the validation
of these proposed interaction-spring models with both physical shake
table and centrifuge tests. Additionally, Aldaikh et al. [24] proposed an
alternative closed-form analytical expression for these interaction
springs based on a Boussinesq approximation of the surficial displace-
ment fields. These alternative formulae where shown to be completely
consistent with those initially proposed and validated in [22,23,28].
Vicencio and Alexander [25] extended these previous models further by
permitting the soil to exhibit nonlinear hysteretic behaviour. Results
indicate that SSSI effects can increase with soil nonlinearity.
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Hans et al. [26] and Li et al. [27] have conducted some experi-
mental in situ investigation, at real or small scales, which used a series
of shaking table test to study the effects of SSSI on the response of
buildings. Trombetta et al. [30,31] and Mason et al. [32] have in-
vestigated the SSSI effects using physical models in centrifuge tests.
Kitada et al. [33] and Yano et al. [34] studied the SSSI problem for
nuclear plants in the field and developed laboratory tests.

Experimental tests of specific cases are essential as validation points.
However, we should be under no illusions; these experiments are chal-
lenging to undertake. This is because of the problems of scaling. Results
represent a statistically small sample, and inevitably they provide only a
limited parametric exploration of the generalised problem. Some would
advocate that advanced computational models (FEA) that are the obvious
choice for exploring these problems. However, it is very difficult to
characterise both structures and soil in a general and generic sense for a
whole class of building configurations. Thus, large-scale parametric ex-
ploration of this problem is difficult to achieve with these approaches. In

some sense, the burden of information required (in terms of ground
motion, building geometry and material parameters) for the specification
of advanced computational models can obscure insights into the problem
as there are too many system parameters to explore. Therefore, an al-
ternative approach are parametric studies using reduced order models
with a relatively limited number of degrees of freedom. These reduced-
order models (i) capture the most significant dynamic behaviour (ii) have
a relatively small number of system parameters and (iii) are computa-
tionally simple enough for exploring a huge number of generic cases.
These parametric studies should be viewed as an initial exploration of the
problem. They are not meant to replace advanced computational models
and experimental work of specific cases.

In this paper, over 3.1 million of different time-histories cases are
explored using the BlueCrystal, the High-Performance Computing
(HPC) machine belonging to the Advance computing research centre at
the University of Bristol.

Nomenclature

α α,1 2 ratio of foundation/soil to building masses of buildings 1
and 2 respectively []

β ratio of soil/foundation radii of gyration for buildings 1
and 2 []

ε height ratio of buildings 2 to 1 []
η η,1 2 height to radius of gyration ratios for buildings 1 and 2

respectively []
θ θ,1 2 rotation at base of buildings 1 and 2 respectively []
κ interaction spring between buildings 1 and 2 [ML2 T−2]
λ ratio of mass polar moments of inertia of soil-foundation

of buildings 2 to 1 []
μ Poison’s ratio of soil []
ξn critical damping of the system []
ρ ρ,b s average densities of building and soil respectively [M L−3]
τ scaled time []
ϕn modal eigenvector of the system []
χii percentage change in total displacement power when

moving from uncoupled to coupled state [%]
χ̈ii percentage change in total acceleration power, moving

from uncoupled to coupled state [%]
ωrb1 modal circular frequency on rock of building 1 [rad T−1]
ωb1 frequency parameter of building 1 [rad T−1]
ωb2 frequency parameter of building 2 [rad T−1]
ωs1 freq. parameter of soil/foundation building 1 [rad T−1]
ωs2 freq. parameter of soil/foundation building 2 [rad T−1]
ω Fourier frequency [rad T−1]
ωn natural frequencies of the systems [rad T−1]
ϖ interaction frequency ratio parameter [rad T−1]
Ω0 ratio of interaction to building 1 frequency parameter []
Ω2 ratio of building 1 (soil/foundation) to building 1 fre-

quency parameter []
Ω3 ratio of building 2 to building 1 circular frequencies []
Ω4 ratio of building 2 (soil/foundation) to building 1 circular

frequencies []
A A,1 2 total non-dimensional acceleration of building 1 []
A A,3 4 total non-dimensional acceleration of building 2 []
b foundation width []
C non-dimensional damping matrix []

̂C dimensional damping matrix [MT-1]
c1 density ratio (soil/buildings) parametric constant []
c2 frequency ratio parametric constant []
Es total power spectral density []
h h,1 2 total heights of building 1 and 2 respectively [L]
K non-dimensional stiffness matrix []

̂K dimensional stiffness matrix [MT−2]

ks soil/foundation rotational spring in absence of building
interaction [ML2 T−2]

k k,b b1 2 lateral stiffnesses of building 1 and 2 resp. [MT-2]
k k,s s1 2 rotational soil stiffnesses of soil beneath building 1 and 2

respectively [ML2 T−2]
M non-dimensional mass matrix []
M̂ dimensional mass matrix [M]
Mw moment magnitude scale
m m,b b1 2 total masses of building 1 and 2 respectively [M]
m m,s s1 2 soil/foundation masses underneath building 1 and 2 re-

spectively [M]
non-dimensional force vector []

̂p dimensional force vector [ML T−2]
r r,1 2 soil/foundation masses radius of gyration of building 1

and 2 respectively [L]
s aspect ratio of building 1 []
TE system kinematic energy [ML2T-2]
t time [T]
U U,1 2 total non-dimensional relative displacement to ground of

building 1 []
U U,3 4 total non-dimensional relative displacement to ground of

building 2 []
UE system potential energy [ML2 T−2]
U ω( )i Fourier transform of U τ( )i
u u,1 2 non-dimensional relative displacement to ground of

building 1 []
u u,3 4 non-dimensional relative displacement to ground of

building 2 []
ug non-dimensional horizontal ground displacement time

series []
üg non-dimensional acceleration ground motion []
u non-dimensional degree of freedoms vector []
Vs shear wave velocity of soil [L T−1]
Vs normalised non-dimensional shear wave velocity of soil []

ωv ( )b1 displacement transfer function for building 1
ωv ( )b2 displacement transfer function for building 2
ωv̈ ( )b1 acceleration transfer function for building 1
ωv̈ ( )b2 acceleration transfer function for building 2

x x,1 2 relative displacement to ground (in a rotating coordi-nate
frame) of building 1 [L]

x x,3 4 relative displacement to ground (in a rotating coordi-nate
frame) of building 2 [L]

xg horizontal ground displacement time series [L]
ẍg horizontal acceleration ground motion [L T−2]
x dimensional degree of freedoms vector []
z non-dimensional inter-building distance []
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1.1. Aims

In this study, we extend the previous work on the SSSI of two
buildings [22], by including an additional degree of freedom (DOF) for
each of the buildings. Note that the interaction-springs in [22] were
validated with finite element analyses [23], shake table tests [28],
centrifuge test [29] and matched closed-form analytical expressions
[24]. This extra building DOF enables an extra mode for each structure.
Hence, we can extend the parametric scope of the previous study to
include the case of a low-rise building adjacent to a neighbouring much
taller building. Additionally, we shall now employ real ground motion
rather than a Kanai-Tajimi artificial ground motion. These are classified
into three groups: Far-Field (FF), Near-Field Without Pulse (NFWP) and
Near-Field Pulse-Like (NFPL) [35]. These ground motions have differ-
ences in amplitude, duration, envelope shape, and power spectral
content. The previous paper highlighted the possibility that the power
of the earthquake passed from the taller structure to the smaller
structure when the height ratio is close to 1.1 (i.e. the second building is
10% taller than the first building), and the buildings are closely spaced.
The aim of this paper is to answer the following questions.

• Does the introduction of additional degrees of freedom (and hence
modes) in the buildings influence the size of adverse/beneficial SSSI
behaviour?

• Is there evidence to suggest that different types of ground motion
(FF, NFWP and NFPL) can affect the SSSI behaviour?

• Do displacement responses follow a similar trend to total accelera-
tion responses?

2. A theoretical reduced order model for SSSI

2.1. Non-dimensional equations of motion

A two buildings system is shown in Fig. 1, and is described in terms
of six degrees of freedom (DOF). Buildings are coupled with a rotational
interaction spring κ. The soil/foundation system of each building has
one rotational DOF at the foundation level θj. The building super-
structures have two translational DOFs ( −x j2 1 and x j2 ) relative to the
ground, with ∈j [1, 2]. Thus, the three DOFs of each building can be
viewed as a projection, onto a three modes vector basis, of a generalised
multi-storey building of height hj. In the same way, this extended
simplified reduced model enables SSSI between the ‘second sway mode’

of a tall building and the ‘first sway mode’ of a shorter building that was
neglected in previous studies [22,23]. A known ground displacement
field xg is applied at both foundations, i.e. wave passage effects and
spatially heterogeneous ground displacement are neglected in the pre-
sent work. Building pounding is not permitted as inter-building spacing
is assumed large enough to avoid pounding.

The kinetic energyTE and potential energyUE for this system are given
by Eqs. (1) and (2) respectively. The total kinetic energy can be specified
as the sum of translational kinetic energy (due to sway and foundation
rotation) of each building’s mass and the rotational energies of each
foundation/soil mass. The potential energy is the sum of internal work due
to buildings deformation, rotation of the foundation springs underneath
the buildings, and the differential rotation between buildings.
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where hj is the total height of the buildings and mbj is the total mass of the
buildings.msj are the foundation/soil masses underneath building 1 and 2,
rj are the soil/foundation masses radius of gyration, m rsj j

2 are the foun-
dation/soil mass polar second moments of area (moments of inertia). kbj
are the building lateral stiffnesses, κ is the stiffness of the inter-building
soil rotational spring and bj are the width of the buildings’ foundation. The
Euler-Lagrange equation of motion describing the dynamics of the dis-
cretised system can be derived in the standard way by calculus and is
formulated in Eq. (3).

̂ ̂ ̂ ̂+ + = xMx Cx Kx p¨ ̇ ¨g (3)
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The dimensional form of the system (3) contains too many system para-
meters. This is a rather large number for a parametric study even in a
linear system. Hence, we seek a reduction in the number of parameters
through a process of removing all system dimensions. Thereby, we can
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Fig. 1. Two building system.
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introduce the following non-dimensional parameter groups,
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the frequency parameters,
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and the non-dimensional frequency ratios normalised by ωb1,
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To define the properties of the system, we seek to estimate the system
parameter ωb1, which can be related to the first modal circular frequency
(on a fixed base) ωrb1 for the building 1. If the equation of motion (3) is
derived for a rigid base case, as shown in Appendix A, then static con-
densation of the above equation of motion (3) results in a two-DOF
system. The first modal circular frequency ωrb1 of this system can be
obtained by the solution of its resulting eigenvalue problem, as follow.

= =ω k
m

ω0.874 0.874rb
b

b
b1

1

1
1

(9)

In this paper, we approximated the first building frequency ωrb1 by
using the SEAOC Blue Book [36] estimate of the natural period of a
structure on a rigid foundation, that is =T n /10S (where T is the fun-
damental natural period of a structure in seconds, and nS is the number
of storeys). If we assume an average storey height of 3.2m, the total
height of the building is =h n3.2 s1 and hence the period is =T h /321 .
The period has a relationship with the circular frequency of

=ω π T2 /rb1 . Therefore, the fundamental natural frequencies, on a rigid
base, are ≈ω h200/rb1 1 and ≈ω h200/rb2 2 for the building 1 and 2 re-
spectively. Thus, we can re-express the frequency parameters described
in Eq. (7) for the buildings 1 and 2 in terms of buildings’ height.
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Finally, we introduce the following change of variables
= = =− −x u r x u r x u r, ,j j j j j j g g2 1 2 1 2 2 1 and the time scale =τ ω tb1 . This

completes the full non-dimensionalisation of the problem, where −u j2 1
and u j2 are the non-dimensional relative displacement of buildings to
ground and ug is the non-dimensional horizontal ground displacement
(absolute). Therefore, after some calculus, the Euler-Lagrange equations
of motion can be stated thus,

+ + = uMu Cu Ku p¨ ̇ ¨g (11)

where Newtonian dots above now indicated derivatives with respect
to scaled time τ , i.e. = ∂ ∂τ(•)̇ / and = ∂ ∂τ(•̈) •/2 2. The matrices and
vectors for the above equation are stated as follows,
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The system’s linear viscous damping matrix C defined in equation (11)
assumes that each natural mode ∈n [1, 6] is damped at =ξ 0.05n of
critical damping. ϕn is the eigenvector for mode n, ωn are the natural
frequencies of the systems. Thus, the Caughey orthogonal damping
matrix C can be calculated as [37]:
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2.2. Reducing the number of system parameters

Eq. (11) is expressed in terms of ten linear system parameters η1, η2,
α1, α2, λ, Ω0, Ω2, Ω3, Ω4 and ωb1. Additionally, the ground excitation has
its own statistical descriptors which can be viewed as further system
parameters. Therefore, we still have a large system parameter space to
explore for a comprehensive parametric study. To reduce this number,
we follow the procedure described in [22] where the scope of our
analysis is limited by assuming that:

(i) the same soil profile exists under both buildings, this means =k ks s1 2
(ii) both buildings have a similar square plan area of b2, where

= =r r b0.331 2

(iii) both buildings have the same average density, ρb
(iv) the buildings can be of different heights, hj
(v) the buildings are spaced at some arbitrary distance from each other, zb.

Newmark and Rosenblueth [38] proposed that the dynamic mass of soil
beneath buildings is equal to =m b ρ0.35s s

3 . The mass of the buildings
can be calculated as =m ρ h bbj b j

2, where ρs and ρb are the densities of
soil and building respectively. Based on typical spans and floor loading,
the average building density is 400–800 kg/m3, while typical soil
density ranges between 1200–2100 kg/m3. Hence, the soil density and
the proportionality constant c1 used in this research is defined in
Table 1. The radius of gyration of the soil-cylinder (directly under the
rigid foundation) is calculated according to the Newmark’s empirical
expression ≈r b0.33 . Parameters η1, η2, α1, α2 and λ are contracted into
two geometric parameters Height ratio =ε h

h
2
1
and Aspect ratio =s h

b
1 .

= = = = = =η s η εs α c
s
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εs

λ ε c
ρ
ρ

3 , 3 , , , , 0. 35 s

b
1 2 1

1
2

1
1

(15)

Empirical forms for the rotational and inter-building interaction
spring defined in Alexander et al. [22] are used. These values were
validated using finite element models, physical experimental models
and closed-form analytical models [22–24,28]. Therefore, the values of
foundation rotational spring = =k k k qs s s1 2 2, and the interaction spring
stiffness κ is modelled as an inverse cube function of non-dimensional
inter-building separation distance z.
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The rotational stiffness spring coefficient ks is obtained by using the
empirical formula (deduced by Gorbunov-Possadov et al. [39]) in the
absence of building interaction. Gs is the elastic shear modulus of the
soil and μ is the Poisson’s ratio of the soil. Hence, we can express the
soil frequency ratios in the form,
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where =V G ρ/s s s is the shear wave velocity of the soil in [m/s],
=V V /1000s s is the normalised non-dimensional shear wave velocity (to

a reference of 1000m/s) and soil constant c2; both are defined in table
1. The frequency ratio parameters Ω0 and Ω3, the ratio of foundation
radii of gyration β and the ratio of foundation mass polar moments of
inertia =λ β are contracted and re-expressed in terms of:
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Thus, Eqs. (12) and (13) can re-express as follows,
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Therefore, in this analysis, we need only 3 geometric non-

dimensional parameters and one site classification. This allows us to
perform an intensive study that explores a huge number of generic
cases. Hence, the complete problem, in Eq. (11), is reduced to a four
parameter problem, in Eqs. (20) and (21). These four parameters are
listed as follows:

(i) Aspect ratio =s h b/1 (for building 1).
(ii) The height ratio =ε h h/2 1 (building 2 to 1).
(iii) The normalised inter-building distance ratio z (ratio of the distance

between buildings to building width).
(iv) the soil class, that is defined using c1, c2, Vs, ρs and μ (see Table 1).

2.3. Defining system performance measures

As a measure of change in the response between the coupled (SSSI)
and uncoupled (SSI) systems, in this study we will use the following
performance measures,

= − = + −U u
h
b
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h
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j

j j j g
j

j2 2 2 2 (22)

where U j2 and A j2 are respectively the relative (sway+ rotational)
displacements and total (sway+ ground+ rotational) accelerations for
the top of buildings “j” in non-dimensional form. So, U2 and U4 are the
displacements at the top of buildings one and two. The error in the
response total power, when using uncoupled SSI analyses rather than
coupled SSSI analyses is defined as follow,

= −χ E U E U
E U
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s i SSI (23)

where subscript i is from 1 to 4 and E U( )s i is the total power spectral
density (which is based on all data points of response timeseries Ui),
which is defined using the Parseval’s theorem according to Eq. (24).
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where U ω( )i is the continuous Fourier transform of U τ( )i . This error/
difference term χii would be zero if there is no difference between SSSI
and SSI analyses; thus, indicating no inter-building coupling effects.
Therefore, χii could be viewed as the error in not employing SSSI
analyses for a coupled building configuration. χ22 is the error in the top
displacement of building 1, and χ44 is the error for the top displacement
of building 2.

Using the total power as a comparative metric delivers a statistical
estimate of magnitude that is more robust than employing a single peak
of the function. To obtain the uncoupled system response (SSI) case
either (i) increase inter-building distance z to a very large value or (ii)
set =q 0κ and =q 12 . Similarly, the error/difference in acceleration
responses are defined as,

= −χ E A E A
E A

¨ 100 [ ( )] [ ( )]
[ ( )]ii

s i SSSI s i SSI

s i SSI (25)

Additionally, for a more forensic exploration of system responses
used later, we define the norms of the system transfer functions. In
frequency domain system analysis [40], we can determine the system
response through the displacement transfer function ωv( ) between the
degrees of freedom uj and the earthquake üg . By taking a Fourier
transform of Eq. (11) we re-express the set of differential equations with
a set of algebraic equation, thus,

=
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where the vector U ω( ) is the Fourier transform of vector τu( ), U ω¨ ( )g is

Table 1
Linear elastic stiffness parameters for soil classes.

Soil class (sand) kg mρ [ / ]s
3 μ [] c []1 c []2 V m s[ / ]s

Dense 2000 0.35 1.17 385.4 325
Medium 1600 0.30 0.93 357.9 250
Loose 1300 0.30 0.76 357.9 156
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the Fourier transform of the ground acceleration u τ¨ ( )g , and ω is the
Fourier frequency. This can be expressed as the norm of the transfer
function for the building 1 and 2.
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where ωv‖ ( )‖b1 2 and ωv‖ ( )‖b2 2 are the Euclidian norms of displacement
response transfer functions for building 1 and 2 respectively. The ac-
celeration transfer function is equal to =ω iω ωv v¨ ( ) ( ) ( )2 . Similarly,

ωv‖¨ ( )‖b1 2 and ωv‖¨ ( )‖b2 2 are the Euclidian norms of acceleration response
transfer functions for building 1 and 2 respectively. Thus, we shall
employ:

(i) difference/error in total power responses, (Eqs. (23) and (25)) as an
overall system comparative metric.

(ii) the Euclidian norms of response transfer functions (Eqs. (26) and
(27)) for a more forensic system examination metric.

3. Analyses

3.1. Ground motion selection

To determine the effect of SSSI on the system we consider three
types of ground motion. This includes Far-Field (FF), Near-Field
Without Pulse (NFWP) and Near-Field Pulse-Like (NFPL) record sets
[41]. The earthquakes that occur in fields close to a ruptured fault can
have different characteristics than those further away from the seismic
source. The Near-Field zone is a set of ground motions recorded at sites
located less than 10 km from the fault rupture, and the Far-Field zone is
to be at sites greater than 10 km from the fault rupture [35]. A pulse-
like ground motion is considered to be a record with a short-duration
pulse that occurs early in the velocity time history and has large am-
plitude [42]. One cause of these velocity pulses are forward-directivity
effects in the near-fault region.

The ground motions database is obtained from FEMA P695 [35],
which includes records with different characteristics, i.e. FF, NFPL and
NFWP (see Fig. 2). The recorded acceleration series of these ground
motions are selected from the Pacific Earthquake Engineering Research
(PEER-NGA) West database [41]. The FEMA P695 recommends a set of
22 FF records that are taken from 14 events that occurred between
1971 and 1999. Eight of them occurred in California, and six of them
are taken from different places around the world. Each record has two
horizontal components. Event magnitudes range from =M 6.5w to

=M 7.6w with an average magnitude of =M 7.0w . Values of their peak
ground accelerations (PGAs) vary from 0.21 g to 0.82 g with a mean
value of 0.43 g.

3.2. Response of the system for a set of parameters

The analysis is carried out first for the Near-field Pulse-Like Loma
Prieta earthquake for a selected combination of parameters as a starting
example. We examine the case when the two buildings are placed in
very close proximity to each other, i.e. at a spacing distance of 0.1b and
hence =z 0.1. This building spacing has been demonstrated to be large
enough to avoid pounding but close enough to maximise the SSSI ef-
fects [22–24,28]. The rigid base frequency of the building 1 is

=ω π/2 3.3 Hzrb1 . Then, in Sections 3.3 and 3.4, the three types of
ground motion sets are considered, and a broader range of system
parameters are explored.

An important feature of the SSSI systems is that the fundamental
frequencies of the coupled system do not change very much compared
to the uncoupled system, i.e. there is a maximum of 9% variation in the
natural frequencies between the SSI and SSSI systems. This character-
istic can be seen in the changes of peaks for the transfer functions,
between the uncoupled and coupled system, in the following figures.

Fig. 3(a) shows the uncoupled SSI (blue1 line) and coupled SSSI (red
line) response for the upper DOFs of the buildings 1 (namely the dis-
placement U2 and the total acceleration A2). This is for the case where
the second building is 10% taller than building 1, and building 1 has a
height to width ratio equal to 2.6 (height ratio = =ε h h/ 1.12 1 and as-
pect ratio = =s h b/ 2.61 ). Comparing the SSI and SSSI responses, we
observe that the maximum displacement of buildings increases, when
the coupling is considered, as well as total acceleration in almost all the
time-history. Fig. 3(b) shows the corresponding power spectral density
for the displacements and total acceleration for the building 1 con-
sidering the uncoupled and coupled case. Comparing the SSSI and SSI
responses, we observe that building 1 is significantly affected by the
taller building 2. There are big amplifications in the displacement and
acceleration power spectral density for a Fourier frequency equal to
2.2 Hz (which mainly represents the building 1′s first natural fre-
quency). Building 1′s displacement response power increases by

=χ 78%22 (change defined in Eq. (23)), and the system has a larger
amplification in acceleration response power of =χ̈ 120%22 (change
defined in equation (25)). In general, greater amplifications are ob-
served for accelerations than for displacements, for height ratios close
to 1.1.

Fig. 3(c) displays the norm transfer function for the displacements
ωv|| ( )||b1 2 and accelerations ωv||¨ ( )||b1 2 for building 1. Comparing the

uncoupled (blue line) and coupled case (red line) responses, there is a
transfer of earthquake energy between building 2 (represented as the
first peak in Fig. 3(d) with a Fourier frequency of 1.8 Hz) to building 1
(represented as the first peak in Fig. 3(c) with a Fourier frequency of
approximately 2.2 Hz). The higher modes of the system do not produce
a significant change in the response of the system, for height ratios close
to 1.1 (buildings of similar height). Fig. 3(d) displays the norm transfer
function for the displacement ωv‖ ( )‖b2 2 and acceleration ωv‖¨ ( )‖b2 2 for
building 2. There is a decrease of energy in building 2 which produces a
reduction in the response of = −χ 45.2%44 and = −χ̈ 16.7%44 in the
displacement and acceleration respectively. This is mainly due to the
decrease in the first peak, coupled SSSI case. These Fig. 3(d) displays a
classical tuned mass damper (TMD) characteristic, where building 1 can
be viewed as a TMD for building 2.

Fig. 4 displays the response for a system that the second building is
2.5 times the first building, and building one has a height to width ratio
equal to 2.6 (aspect ratio = =s h b/ 2.61 and height ratio

= =ε h h/ 2.52 1 ). Fig. 4(a) shows the uncoupled and coupled responses
for the upper DOFs of building 1, that is the displacement U2 and the
total acceleration A2. Comparing the uncoupled and coupled responses,

Fig. 2. Elastic response spectra of FEMA P695 ground motions.

1 For interpretation of color in Figs. 3, 6 and 7, the reader is referred to the
web version of this article.
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we observe that the maximum displacement and acceleration of
buildings increases for the SSSI case, just like in the initial example.

Fig. 4(b) shows the power spectral density for the displacements and
total accelerations. We observe that building 1′s total response power
increase about =χ 63.7%22 and =χ̈ 51.3%22 in the displacement and
acceleration respectively. In general, for height ratios greater than 2.0,
higher amplifications are observed for displacement than for accelera-
tion. The main difference observed with the previous case is that there
are 3 closely spaced resonances/modes (see Fig. 4(b)) as opposed to 2
closely spaced resonances/modes in the previous case of Fig. 3(b).

There is a significant amplification in the displacement power
spectral density for a Fourier frequency equal to 0.61 Hz. This is mainly
due to building 2′s first uncoupled natural frequency. As stated pre-
viously, the eigenfrequencies for the coupled and uncoupled system are
very similar. However, the eigenmodes are different for the coupled
system as they span the two buildings rather than a single building in
the uncoupled system. The resonance at 0.61 Hz is not significant for
acceleration, mainly because the acceleration response is not as

susceptible to low-frequency content by definition. This is a result of the
Eulerian relationship =ω iω ωv v¨ ( ) ( ) ( )2 . The second resonance in the
displacement and acceleration occurs at a Fourier frequency equal to
2.1 Hz (which corresponds to building 1′s first uncoupled natural fre-
quency). While the third resonance is due to building’s 2 s uncoupled
natural frequency.

Fig. 4(c) and (d) displays the norm of the transfer function for the
displacement and acceleration for building 1 and 2 respectively. As in
the previous case (Fig. 3), there is a transfer of earthquake energy be-
tween building 2 to building 1, producing a reduction in building 2′s
responses of = −χ 12.3%44 and = −χ̈ 4.1%44 in the displacement and
acceleration respectively. For this parameter setting, the ‘first modal
frequency’ of building 1 (represented by the second peak with a Fourier
frequency of 2.1 Hz) is close to the natural frequency of the second
mode in building 2 (represented by the third peak in Fig. 4(d) with a
Fourier frequency of 3.4 Hz). This produces an additional amplification
in the response of building 1.

To quantify the effect of secondary modes of building 2 on building

Fig. 3. Response on loose soil for parameter set (ε=h2/h1=1.1, s= h1/b=2.6, z= 0.1) (a) Displacement and acceleration responses. (b) Power spectral density of
displacement and acceleration responses. (c) Transfer function for building 1. (d) Transfer function for building 2.
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1, the response for the equivalent system described in the paper [22]
will be calculated. This model represents a pair of buildings with 2
DOFs each, whose response is shown in Fig. 5. The main feature that
differentiates the two models is that the reduced order model presented
in this research allows the interaction between the second sway mode
of the taller building with the first sway mode of the smaller building.
This additional interaction it was not explored in the papers [22,23].

Fig. 5 shows the uncoupled and coupled response (system with
original 4 dofs model [22]) when the second building is 2.5 times the
first building, and the building one has a height to width ratio equal to
2.6. In this case, building 1′s total response power increase about

=χ 20%11 and =χ̈ 24.6%11 in the displacement and acceleration re-
spectively, versus the values =χ 63.7%22 and =χ̈ 51.3%22 shown in
Fig. 4(b). This difference is mainly due to the additional degree of
freedom in each building, and it generally occurs when the first natural
frequency of building 1 is close to the second natural frequency of
building 2. This is likely to occur if the height ratio between the two
buildings is greater than 2. In addition, in Fig. 5(c) we can observe that

the third and fourth peak disappeared. So, amplification/reduction in
the response is only influenced by the first two modes. Thus, adding an
extra degree of freedom to building 1 and 2 may increase the interac-
tion between the buildings. Nevertheless, incorporating further addi-
tional degrees of freedom into the buildings (i.e. greater than 3 DOF per
building) does not significantly affect the SSSI system response. This is
because the modal participation factors of additional higher system
modes are very small.

For some specific ground motion, there is a significant amplification
in displacement when the height ratios are greater than 2.0. Fig. 6(a)
shows the response for the Near-field Pulse-Like Erzicam ground mo-
tion. Comparing the SSI and SSSI responses, there is a large amplifi-
cation in the displacements =χ 258%22 but not in accelerations

=χ̈ 18.6%22 . Fig. 6(b) displays the norm of the transfer function for each
degree of freedom corresponding to building 1. It is seen that the am-
plification in displacement comes through the amplification of the ro-
tation/rocking of building 1, due to the presence of the taller building
2. The taller building has a fundamental modal frequency at 0.8 Hz

Fig. 4. Response on loose soil for parameter set (ε= h2/h1=2.5, s= h1/b=2.6, z= 0.1) (a) Displacement and acceleration response, (b) Power spectral density of
displacement and acceleration responses, (c) Transfer function for building 1 and (d) Transfer function for building 2.
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when it is uncoupled. In the coupled system, this 0.8 Hz mode, remains
at approximately 0.8 Hz, but has an eigenvector (spanning the entire
couple system) with a large rotational component in building 1. Thus,
we observe very large differences in displacement responses from SSI
and SSSI analyses for this case. The taller building seems to induce a
large ‘rigid body rocking’ in the smaller building, which is represented
by the peak (at 0.8 Hz) in the transfer function for the rotation of
building 1 (red line).

This behaviour is not observed for the acceleration responses be-
cause all low-frequency acceleration responses are not subjected to low-
frequency amplification. This is a result of the Eulerian relationship

=ω iω ωv v¨ ( ) ( ) ( )2 .

3.3. Change in power with variation in aspect ratio ε and height ratio s

We now take a look at the error in total power of building 1, defined
in Eq. (23) for the displacement χ s ε( , )22 and defined in Eq. (25) for the

acceleration χ s ε¨ ( , )22 . This error/difference term would be zero if there
is no difference between the coupled (SSSI) and uncoupled (SSI) ana-
lyses.

The variation of error in power, with height ε=h2/h1 and aspect
ratio s= h1/b for loose soil and inter-building spacing of =z 0.1, is
plotted. Again, noting that this inter-building spacing is validated in
[22–24]. The system is subjected to all earthquake events, classified by
Far-Field (FF), Near-Field Without Pulse (NFWP) and Near-Field Pulse-
Like (NFPL) record sets. For each of these record sets, the maximum of
maxima error (for this record set), the mean error (for this record set)
and the standard deviation of error (for this record set) are presented.

Fig. 7(a) displays the contour plots of variation of error χ s ε( , )22 for
the displacement U2 on top of building 1, for the Far-Field records.
Fig. 7 contains the results of nearly half million different time-histories
analyses. We employed University of Bristol’s supercomputer, Blue-
Crystal, for these simulations. The critical zones in the figure are red,
i.e. where the total response power of building 1 is amplified by the

Fig. 5. Response on loose soil for parameter set (ε=h2/h1=2.5, s= h1/b=2.6, z= 0.1) (a) Displacement and acceleration response for a system with 4 dofs, (b)
Power spectral density, (c) Transfer function for building 1 and (d) Transfer function for building 2.
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Fig. 6. Response on loose soil for parameter set (ε=h2/h1=2.5, s= h1/b=2.6, z= 0.1) (a) Displacement and acceleration responses and (b) Transfer function for
individual DOFS in SSSI case.

Fig. 7. Response on loose soil and z= 0.1 for Far-Field records. Maximum value, average and standard deviation for error in (a) displacement power sχ ε( , )22 and (b)
acceleration power sχ ε¨ ( , )22 .
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presence of building 2. Blue indicates when the response power is re-
duced. With the aim of making the figure more readable, the change in
the color contour is shown up to a value of 90%, and for larger values
only the contour line is marked. For height ratios greater than 1, i.e.
when adjacent buildings are taller, the response of building 1 is am-
plified. The maximum increase in total displacement power response
occurred when the structure configuration lies around

=χ (2.6, 1.1) 110%22 , and when the height ratio is greater than 2. On
average, the amplification reaches a value of 20% and a standard de-
viation of 15%. Thus, a very similar trend is observed on the change in
power for all FF earthquake for the whole range of parameters.

Fig. 7(b) displays the contour plots of variation of error in power
χ s ε¨ ( , )22 (i.e. the error in using SSI analysis for a coupled building
scenario) for the acceleration A2, considering the top of building 1 and
FF records. As with the displacement, for height ratios greater than 1
the response of building 1 is amplified. The maximum increase in total
acceleration power response occurred when the building parametric
configuration lies around =χ̈ (2.5, 1.1) 110%22 and its average is ap-
proximately =χ̈ (s, 1.1) 40%22 . The dispersion of the values is small,
with a maximum of 40%, for the whole range of analysed parameters.

Fig. 8(a) displays the contour plots of variation of error in power
χ s ε( , )22 for the displacement U2 considering the Near-Field Pulse-Like
records. Again in Figs. 8 and 9 over half a million different time-his-
tories analyses are developed. Unlike the Fig. 7(a), there is a large
amplification when the height ratio is greater than 2.0, reaching values
above 400% of amplification.

Fig. 8(b) displays the contour plots of variation of change in power
χ s ε¨ ( , )22 for the acceleration A2, for NFPL records. As with the FF re-
cords, the maximum increase in total acceleration power response oc-
curred when the structure configuration lies around

=χ (2.6, 1.1) 110%22 . The dispersion of the values is small, with a
maximum of 30%, for the whole range of analysed parameters.
However, unlike the results shown in Figs. 7(a) and 8(a), the variation
of power for the acceleration decreases as the height ratio increases.
This is because the response accelerations are not susceptible to low-
frequency content, as shown in Fig. 4(b). On the other hand, the dis-
placement responses are susceptible to low-frequency content, as ex-
emplified by the peak produced in the power spectral density in
Fig. 5(b), especially when the height ratio is greater than 2 (the taller
building 2 produces a great influence on building 1).

Fig. 9 shows the variation of error in power for the displacement U2
and acceleration A2 considering Near-Field Without Pulse records. In
general, the behaviour of NFPL and NFWP earthquakes follows a si-
milar pattern for maximum values, averages and standard deviation.
Comparing the FF and NF earthquakes, the contour plots suggest that
the low-frequency content of the earthquake (especially for Near-Field
records) can affect the size of adverse SSSI effects, especially for re-
sponse displacements when the height ratio is greater than 2.0.

Fig. 10 depicts the power spectral density estimate of all earth-
quakes and the average for FF, NFPL and NFWP records sets. We can see
that, on average, the NF records set has a larger average low-frequency
content (between Fourier frequency 0.01 Hz to 1 Hz). This larger low-

Fig. 8. Response on loose soil and z= 0.1 for Near-Field Pulse-Like records. Maximum value, average and standard deviation for error in (a) displacement power
sχ ε( , )22 and (b) acceleration power sχ ε¨ ( , )22 .
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frequency content results in more significant responses in displace-
ments (through a ‘rigid body rocking’ mode in the smaller building)
when a small building is adjacent to a tall building.

3.4. Change in power due to variation in soil type and inter/building spacing
z

Fig. 11 displays the previous analysis for the case of dense sand and
the three types of ground motions plotted together. Figs. 11 and 12,
contain more than 2 million different time-histories analyses. In this
case, the amplification/reduction in the change of power are more
limited, =χ (2.6, 2.5) 110%22 and =χ̈ (2.8, 1.1) 60%22 in the displace-
ment and acceleration respectively. Therefore, the worst seismic in-
teraction condition occurs on loose soil as reported previously in
[22–24].

Fig. 12(a) shows the variation of power χ ε z(s, , )11 for the dis-
placement with height ratio =ε h h/2 1 and inter-building spacing z,
considering the three types of ground motions plotted together. The
aspect ratio was set equal to = =s h b/ 2.01 . As expected, the effects of
SSSI decreases when increasing the inter-building spacing, being prac-
tically negligible =χ ε(2.0, , 2.0) 3.5%11 with a distance between foun-
dations equal to b2 . Fig. 12(b) repeats the previous analysis for the
change in power χ ε z¨ (s, , )11 in the acceleration and similarly, the in-
teraction effect drops when increasing the inter-building spacing to a
value of =χ ε¨ (2.0, , 2.0) 2.8%11 .

4. Conclusion

In this paper, we present a theoretical formulation, which is a re-
duced order model, for Structure-Soil-Structure interaction between

Fig. 9. Response on loose soil and z= 0.1 for Near-Field Without-Pulse records. Maximum value, average and standard deviation for error in (a) displacement power
sχ ε( , )22 and (b) acceleration power sχ ε¨ ( , )22 .

Fig. 10. Power spectral density estimate for ground acceleration records.
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two buildings that are coupled through the soil. Three types of ground
motion were considered (Far-Field, Near-Field Without Pulse and Near-
Field Pulse-Like records sets), selected from FEMA P695. It is shown
that the complexity of the analysis is high due to a large number of
system parameters, even for this reduced order model. Hence, a series
of reasonable assumptions have been made to reduce further the
number of system parameters. The parametric exploration undertaken
in this paper explores the system response behaviour for a large range
of buildings, inter-building spacing, soil types as well as ground motion
excitation. These dynamic simulations involve over 3.1 million unique
time-history analyses. It should be noted that the reduced order SSSI
model was previously calibrated and validated with (i) finite element
analyses [22] (ii) physical experimental test using the University of
Bristol’s shaking table and University of Dundee’s centrifuge [23,28,29]
and (iii) an analytical formulation derived from a Boussinesq de-
formation field of an elastic half-space [24].

The linear SSSI parametric study showed that there are detrimental
and beneficial configurations for the dynamic characteristics of build-
ings. Regardless of the earthquake event (FF, NFWP or NFPL), it is
found that the effect of interaction is unfavourable for building 1 when
building 2 is taller: i.e. the power of the earthquake passed from the
taller structure to the smaller structure. For the displacement responses,
there is an increase in the response of up to 400%, when there is a large
difference of height (height ratio = >ε h h/ 2.02 1 ) between the build-
ings. This result was not observed in previous studies [22,23,28]. The

taller building imposes a low-frequency ‘rigid body rocking mode’ on
the smaller building. If this behaviour is combined with ground motions
that have a larger low-frequency content (i.e. the near field records),
then there is significant error in using SSI analyses rather than SSSI
analyses for these cases. This behaviour is observed in displacement
responses alone because acceleration responses are, by definition, much
less susceptible to low-frequency excitation.

For the acceleration responses, the greatest amplifications, of up to
120%, are observed for height ratio approximately of = =ε h h/ 1.12 1

(i.e. buildings of 10% difference in height). This finding confirms the
results of previous studies [22,23] with a 4dof model and artificial
ground motion records.

Results also indicated that there is a beneficial geometric config-
uration ( = <ε h h/ 1.02 1 ) where the seismic risk is reduced in building 1
by the presence of a smaller building 2. A maximum of reduction of
−45% for displacement and acceleration is observed. Both adverse and
beneficial effects diminish as (i) building spacing increase and as (ii) the
soil stiffness increases.

Results obtained from this 6dof model suggest that the introduction
of two additional DOFs (i.e. enlarging 4dof model [22,23] to 6dof
model developed here) can affect the size of interaction between the
buildings. In this case, the 6 dof model permits the interaction of the
second sway mode of a much taller building with the first sway mode of
a shorter building of less than half its height. This indicates modal
coupling is possible between more than just the primary modes of each

Fig. 11. Response on dense soil and z= 0.1 under all ground motion records. Maximum value, average and standard deviation for error in (a) displacement power
sχ ε( , )22 and (b) acceleration power sχ ε¨ ( , )22 .
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building and therefore suggests a significant interaction between a
taller building 1 and much shorter building 2. This result cannot be
observed in the 4dof model where the most significant interactions
occur when the buildings heights are within 10% of each other [22,23].

This raises the question as to whether there is a possible interaction
between first and third building sway modes, second and third building
sway modes, etc. Mathematically, these interactions are permissible
with a reduced order model that has a sufficiently large number of
DOFs and an appropriate set of system parameters. However, it should
be noted that these interactions are likely to be less significant because
the modal participation factors for higher modes is much smaller than
for the primary modes.

Finally, there is evidence to suggest that the ground motion type can
affect linear SSSI behaviour. The SSSI displacement responses do not
follow the same trend as acceleration responses, and the introduction of
the higher mode model does help to capture the SSSI behaviour in the
case of a small building adjacent to a tall building.
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Appendix A. Theoretical formulation of rigid base building

Fig. 13 shows a two degree of freedom system x1 and x2, where it is considered a rigid base foundation for the building. mb is the total mass of the
building, kb is the building’s stiffness and h is the total height of the building.

Hence, the stiffness and mass matrix of the 2-dof can be defined according to:

Fig. 12. Response on loose soil and aspect ratio s= 1.0 for all ground motion records. Maximum value, average and standard deviation for error in (a) displacement
power s zχ ε( , , )22 and (b) acceleration power s zχ ε¨ ( , , )22 .

Fig. 13. Idealised two degree of freedom model.
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Through solving the resultant homogeneous eigenvalue problem − =ωK M| | 0, we can obtain the first modal circular frequency, where the coefficient
0.874 is obtained through solving the eigenproblem’s quadratic characteristic polynomial for the first root.

= k
m

ω 0.874rb
b

b
1

(29)

Appendix B. Summary of ground motions

Tables 2 and 3.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.engstruct.2018.07.049.
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